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On classical and quantal Kolmogorov entropies 
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Abstract. The construction of a quantal Kolmogorov entropy that tends to the classical 
Kolmogorov entropy in the limit h -t 0 is discussed. The approach is to use sets of functions 
rather than disjoint partitions and involves the use of pseudo-differential operators. 

1. Introduction 

The much studied phenomenon of deterministic chaos in Hamiltonian systems has led 
to some interesting questions concerning the possible implications that this behaviour 
might have for quantum mechanics in the limit of h + 0. 

The integrable Hamiltonian systems of classical mechanics form an exceptional 
but important set of systems. Here, for a system of N degrees of freedom all trajectories 
are confined to N-dimensional tori embedded in the ( 2 N  - 1)-dimensional energy 
shell (here we are referring to a conservative Hamiltonian H = E ) .  For all initial 
conditions the system evolves in a highly regular, multiply periodic manner. By contrast, 
generic Hamiltonians are non-integrable. Now the phase space has a most complicated 
structure of stable and unstable orbits pathologically intertwined. Some trajectories 
are still confined to tori whereas others wander over large portions of the energy shell 
in a highly chaotic but entirely deterministic manner. Typically, as nonlinearities in 
the potential are increased the chaos becomes more and more widespread although it 
is unlikely that the system becomes ergodic over the entire energy shell. (This is 
certainly true for systems with smooth bounded potentials but certain other systems, 
such as billiard problems, can be rigorously proven to be ergodic and do, in fact, 
exhibit even stronger statistical properties [ 11.) 

It was suggested by Percival [2] that there might be a correspondence, in the 
semiclassical limit h + 0, between quantum mechanics and classical chaos. He termed 
this regime the ‘irregular spectrum’ in contrast to the ‘regular spectrum’ corresponding 
to the well known correspondence between quantum and classical mechanics in regimes 
of integrable motion. This idea has led to a variety of interesting investigations 
(recently revived by Berry [3]). Furthermore there has also been interest in the more 
general notion of ‘quantum chaos’. The meaning and definition of such a concept has 
proved to be a lively issue. 

Work in this direction has tended to fall into two main categories. These are (a) 
definitions involving a definite correspondence in the limit h + 0 between the quantal 
and classical behaviours and (b) quantum mechanical analogies with the classical 
behaviour. Although one would naturally hope that (b) would also show a correct 
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classical correspondence in the limit f i  + 0 this does not necessarily occur. That the 
two categories should have more than a semantic difference is not surprising since the 
former definitions require a semiclassical description which is built on a ‘skeleton’ of 
classical mechanics whereas the latter definitions are based on purely quantal consider- 
ations. The distinction between (a) and (b) has also been made by Kay [4] who 
carefully defines semiclassical notions of such statistical behaviour as ergodicity and 
mixing. 

An interesting illustration of a quantal definition of a statistical quantity not having 
the correct classical limit (a feature that by no means invalidates its usefulness) has 
been in the context of quantal Kolmogorov entropies. In one case, a definition proposed 
by Kosloff and Rice [ 5 ]  results in a K-entropy that, for bounded systems, is zero 
independent of the classical mechanics. (For integrable motion the classical K-entropy 
is zero and for chaotic motion it is greater than zero.) On the other hand a definition 
due to Pechukas [6] is non-zero independent of the classical mechanics. 

In this paper we propose a definition of a quantal K-entropy that has the correct 
classical limit. The approach uses sets of functions rather than disjoint partitions and 
involves the use of pseudo-diff erential operators. A number of substantial problems 
arise which we have not been able to fully resolve and it is hoped that this paper will 
stimulate interest in them. The motivation for this work was provided by other work 
of the authors on the classical support of quantum mechanical wavefunctions and 
density matrices [7]. Those results provide a useful background to this paper and are 
summarised in the next section. 

2. The classical support of wavefunctions and density matrices 

For integrable systems one may effect the well known canonical transformation to 
action-angle variables, i.e. H ( p ,  q )  + H ( I ) ,  where the actions I are constant conjugate 
momenta. Furthermore the actions are adiabatic invariants and can be quantised 
according to the Einstein-Brillouin-Keller-Maslov [2] rules where each action is set 
equal to an integral multiple of h plus a Maslov index ( a )  i.e., 

I = P, . . . , I ( N )  
I = ( m + :a)  fi,  where m = m‘”, . . . , m ( N )  (2.1) 

a ( N )  
9 . . . 9  

Thus the eigenfunction $,,, has the eigenvalue 

E,,, = H ( I )  = H ( ( m + f a ) f i ) .  

It is important to note that while for afixed value of h we can associate each eigenstate 
with a particular classical manifold (the torus defined by (2.1)), as we take the limit 
h + 0 there will be a whole sequence of states associated with that manifold. 

For regimes of strongly chaotic motion no direct semiclassical quantisation pro- 
cedure has yet been devised. Nonetheless it would be useful to know the nature of 
the classical support for sequences of states in this regime. Here the authors have 
proved the following theorem [7]. 

Theorem. If any sequence of eigenstates of a Hamiltonian H localises to a region R 
in phase space, then there must be a measure p supported in R which is invariant 
under the flow of H. 
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The way in which one tests eigenfunctions for localisation in phase space is non-trivial 
and involves the use of pseudo-differential operators (some of the basic properties of 
these are summarised in the appendix). It is then a standard result of functional 
analysis to show that 

L{( h&k,, $k,)} = [ fm d p  (2.3) 

where L denotes a Banach limit [8] (which could, e.g., for simple cases just be the 
limit l+co) ,  p is a locally bounded Bore1 measure (ypported in R )  and fm is the 
principal symbol of the (pseudo-differential) operator 0, The double subscript on the 
eigenfunctions $k, pertains to the usual mathematical convention of talking in terms 
of subsequences of eigenfunctions (rather than just sequences). The invariance of the 
measure under the Hamiltonian flow is demonstrated through the use of Egorov's 
theorem (see appendix). The theorem also holds for families of density matrices { p , } ,  
i.e., 

UTr( hfl,)} = [ fm d p  (2.4) 

where again p is an invariant measure supported on some closed set R in phase space. 
Thus the above results demonst.rate the way in which operators and families of density 
matrices can be associated, in the limit h + 0 (i.e. through the use of the Banach limit 

(2.4)), with classical functions (the principal symbols) and invariant measures (the p ) .  

3. Classical and quantal entropies 

We first of all construct the standard K-entropy for the classical case. For completeness 
we include some standard background [l]. If P = { P I , .  . . , Pk} is a partition of the 
manifold R, then the entropy of P is 

k 

H ( P )  = - C p ( P i )  ln p ( P i ) .  
i = l  

The entropy of some transformation T relative to P is 

(3 .1)  

(3.2) 

where Vr= ,  T ' P  represents the join P v TP v . . . v T"P. In terms of the measure we 
can thus write 

1 
H ( T ,  P ) = - l i m -  p ( P i , n T P i  2fl...rl T n P i , ) l n p ( P i ,  n...n TnPin) .  

n - . m n .  . . 
1 1 , 1 2 1  . . . . I .  

It is a standard result to show that the entropy H (  T, P )  can be expressed as 

H ( T ,  P )  = lim H 
n-rm 

(3 .3)  

where H (  PIV Y=, T - ' P )  represents the conditional entropy of P given V T-'P. What 
this implies is that if the partition P can be inferred from the previous n partitions 
(which would correspond to a quasiperiodic evolution) then H ( T ,  P )  is zero. The 
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K-entropy H (  T )  is defined as the supremum of H (  T, P) over all partitions P, i.e., 

H (  T )  = sup H( T, P). (3 .4)  
P 

This supremum can be shown to be finite for a fairly wide class of (classical) transforma- 
tions [ l ] .  

Before we proceed to the quantal case we introduce the notion of characteristic 
functions. For the partition P we may associate a function xi with each atom P,. If 
the ‘phase point’ lies in P, then xI = 1 ; otherwise xi = 0. Now consider the partitions 
P at different times t f  and t,. Then we have 

( 3 . 5 ~ )  

(3 .5b)  

where x( Pi( t r )  f l ? (  t , ) )  = 1 if the phase point lies in the intersection Pi( t l )  f l  <( t , )  ; 
otherwise x = 0. Then, by definition, it follows that 

In order to construct a quantal version of the K-entropy one might be tempted to 
proceed directly to a quantum mechanical analogue of the classical phase space 
partition. A n!tyral ch2ice here wo;ld be to take sets of orthogonal projection operators 6 satisfying P,P, = a,,? and Zy=l P, = 1 (cf (3.5~)). This is the starting point used by 
both Kosloff and Rice [ 5 ]  and Pechukas [6 ] .  However, the latter author goes on to 
show that there are certain subtleties in the measurement process which leads to his 
formulation having a different end result to that of the former authors. 

Here we take a different route which, subject to certain technicalities, should lead 
to the correct classical limit. In order to make the transition to a quantal description 
we must first smooth the x, (which behave like step functions) into differentiable 
functions bl such that the b, are ‘within E ’  of the x,. Thus, whereas the x, admit the 
orthogonality property 

( - xJ )x, = (3 .7)  

(cf ( 3 . 5 a ) ) ,  we allow the b, to behave as 

( 1  - b,) b, = O( E ) .  (3 .8)  

Additional constraints on condition (3 .8)  will be discussed later. The family of functions 
8 = { b ,  . . . b,},  which might be termed an ‘&-disjoint partition’ can be constructed to 
satisfy the condition 

k 
bj 3 0, b j = l  

1 = 1  
(3 .9)  

i.e., they constitute a partition of unity. Using the notation 

b j ( h ) =  bjog,, 

where the right-hand side denotes composition with the (Hamiltonian) flow g ,  over k 
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equal time periods T, we define the integral 

6) = bi1(7)bi2(27) . . . bln(nT) dp .  1 
Using (3.6) we can thus define the ‘&-entropy’ of g, relative to 8 

and hence the corresponding K-entropy as 

(3.10) 

(3.11) 

(3.12) 

A crucial technical point, whose relevance to the quantal problem will soon become 
apparent, is the fate of the supremum after taking the limit E + 0. Naturally we would 
hope that 

lim H,(g,) = Hk,). (3.13) 
E ‘ O  

Clearly this will depend on the behaviour of the dJ’s in this limit. Additional constraints 
over and above (3.8) may be required such as 

k 
(1-bj)bj<6 

J = l  

or even for example, 

dx(1-b,)b, log[(l-b,)b,]<6. I 
(3.14) 

(3.15) 

(The authors would like to thank Michael Aizenman and Joel Lebowitz for suggesting 
constraints of the form (3.14) and (3.15).) Not only must we consider the limit E -f 0 
(3.13) but we must also consider the possibility of the supremum taken in (3.12) being 
bounded by a minimum partition ‘size’-in this case the phase volume of a quantum 
state h N .  However this seems unlikely to destroy the boundedness of the supremum. 
Clearly a rigorous resolution of the technicalities raised here would be most valuable. 
Some aspects have been touched on by Brin and Katok [9]. 

The quantal description is effected by using the family of functions 8 = { b,, . . . , bk} 
as the principal symbols for a family of pseudo-differential operators 93 = { E l , .  . . , &}. 
The El’s are taken to satisfy the conditions 

k 
Bj > 0, E J = l .  

] = I  
(3.16) 

Since 8 is an &-disjoint partition the E, cannot be taken to be strictly orthogonal. We 
now associate with any density matrix p and evolution operator U the quantal analogue 
of the integral (3.10), i.e., 

C?( U ;  93, P I )  =Tr(BiI UB,,U. .  . U E , , p , )  (3.17) 
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where U = exp(i tJH).  The use of JH rather than H in the evolution operator is in 
keeping with Egorov’s theorem on the evolution of pseudo-diff erential operators under 
Hamiltonian flows (see appendix). (In (3.17) we use the fact that U-’U’+’= U.) 

The entropy of U relative to $23 is thus just 

and the corresponding K-entropy is then 

(3.18) 

(3.19) 

Another interesting technical question arises that again concerns the supremum. 
The operators Bj have only been defined up to their principal symbols bp It is quite 
possible that there could exist compact perturbations ( Cj)  to the Bj that are sufficiently 
badly behaved to wreck the supremum in (3.19). One can hope that the conditions 
(3.16) will mitigate this problem [lo]. If not, it would be nice to find a systematic 
procedure for further restricting the admissible Cj to obtain the desired behaviour. 

We remark that our definition of H(QUant)( U;  $23) looks not dissimilar to that 
proposed by Pechukas [6], although in that work, as in [5], the observables are not 
taken to be pseudo-differential but a strictly orthogonal projection. In view of our 
results it might be worth examining this assumption more closely. The key seems to 
be less in the form of (3.17) than in the class of observables one admits. 

The final stage is to show the connection, in the limit h + 0, between the classical 
(3.11), (3.12) and quantal (3.181, (3.19) entropies. Suppose { p , }  is a sequence of density 
matrices for which (2.4) holds for some Banach limit L. Then (cf 0 2) 

(3.20) 

This formally makes it appear that the quantum entropy for the pi's approaches the 
classical entropy for k. 

To recapitulate there are two problems: the most serious is the interchange of 
sup(%’) with l im(l+m) in (3.19) and (3.20). Only if the entropy is invariant under 
this interchange can we rigorously say that the quantal entropy approaches the classical 
entropy HE. The other problem concerns whether limEdo HE = H ;  this question might 
not be too hard to resolve, although for our semiclassical model the ‘smoothness’ E 

may itself have to be h dependent-this would then make the limits particularly delicate. 

Acknowledgments 

JHW is supported by the NSF. MT is supported in part by the US Department of 
Energy grant DE-FG02-84ER13 190 and an Alfred P Sloan research fellowship. 

Appendix 

Here we summarise just a few of the basic properties of pseudo-diff erential operators 
[ll]. Consider some well behaved test function u ( x )  in R ”  with the usual Fourier 
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transform and inverse, i.e., 

The effect of some (differential) operator 6, operating on U can then be represented as 

where the polynomial (in 6 )  f ( q ,  5) is called the full symbol of the operator 6, It can 
be decomposed into a sum of homogeneous terms 

f ( q t  5 ) = f m ( q y  5 ) + f m - 1 ( 4 ,  e ) + .  . .f;. . . (A31 

with hompgeneous in 6 of degree j. The leading term f m  is called the principal 
symbol of 0, Pseudo-differential operators are operators defined as above but the f 
are not longer restricted to be polynomials in 6. However the f; are still required to 
be homogeneous in 5, i.e., the symbol f has the asymptotic expansion 

where the f n ' s  are homogeneous in 5. 

ing the square root of the Hamiltonian is used, i.e., 
The pseudo-diff erential character of 6 is preserved under Hamiltonian flow provid- 

Egorov's theorem states that 

f m (  t )  = f m  0 g, (A6) 
where the right-hand side of (A6) represents composition of the principal symbol fm 

w&h the flow g ,  (i.e., fog(  t )  =f(q(  t ) ,  ( 1 ) ) ) .  As is easily demonstrated the flow under 
J H  is the same as that under H subject to a rescaling of time. In general (A5) is not 
exact and corrections arise at lower order (than the principal symbol). For our purposes, 
however, these corrections will disappear when the Banach limit (2.3) is taken. 
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